2081 %

ADP7

AN INTRODUCTION TO AMBIT/L,
A DIAGRAMMATIC LANGUAGE
FOR LIST PROCESSING

by
Carlos Christensen

DISTRIBUTICIT STATEMENT A

BApproved for public release;
Distribution Unlimited

Massachusetts

COMPUTER ASSOCIATES

division of

APPLIED DATA RESEARCH, INC.

NAT,oﬁ’Z’i"“ind by
INFORM AT,OE‘C?E‘:ICAL

Springfiojd, Va. 2215 v,CE

‘ APPLIED DATA RESEARCH. INC.

k LAKESIDE OFFICE PARK, WAKEFIELD, MASSACHUSETTS 01880 :.617 245 9540

AN INTRODUCTION TO AMBIT/L,
A DIAGRAMMATIC LANGUAGE
FOR LIST PROCESSING

by
Carlos Christensen

THIRD EDITION

CA-7102-2211
February 22, 1971

! .] Ay

—

Joazg; ,
PR ¢

- The work reported ir. this paper was supported in part by. :
the Advanced Research Projects Agency of the Office of

The Secretary of Defense under ARPA Order No. 1228,

s

ez

Bt 2

Lot

ABSTRACT

AMBIT/L is a list-processing programming system, It
integrates the general use of recursive functions with a
pattern-matching style of programming. Two-dimensional
directed-graph diagrams are used to represent the data, and
similar diagrams appear throughout the program as the "patterns"
of rules. The system has a simple core, but extends out to
accomodate the always complicated requirements of input-
output, traps and interrupts, and storage management; it is

a large system, The PDP-10 implementation of AMBIT/L is
described in this paper.

Note on Publication History: The first edition of this paper was quite formal
and complete but was not a good introduction and is out of print. The second
edition was more introductory and is being published in the Proceedings of
SYMSAM II, the Second Symposium on Symbolic and Algebraic Manipulation,
Los Angeles, March 23 - 25, 1971. The third edition is a slight correction
and improvement to the second and has, as appendices, the useful formal

definitions of the first edition.

CONTENTS

14
27
30
35
40

46
47

48

Introduction

The Data

The Rule

The Program
Built-in Functions
Built-in Macros
The System

Acknowledgements
References

Appendix A:
The Syntax of Node Names

Appendix B:
The Syntax and Interpretation of Programs

INTRODUCTION

AMBIT/L is a programming system for list-processing. It is used for writing
essentially non-numeric programs which operate on data structures of moderate
or extreme complexity. This applications area includes artificial intelligence,
graphics, algebraic manipulation, and such scftware as compilers, interpreters,

simulators, and editors.

A remarkable and unique feature of AMBIT/L is its use of two-
dimensional diagrams. Both the data and the program are represented by
diagrams in which conventional text plays only a secondary role, The data
diagram depicts the current relations between variables and values, and lines
in this diagram move as program execution proceeds. The program diagram
uses patterns of data in order to reference and modify the data. These dia-
grams are not informal aids or supplementary documentation; they are the
representations used for communication with the computer.

The value of a diagram in almost any context is familiar. But, in
computer programming, the use of diagrams for data can have quite spectac-
ular effects. In diagrammatic form, a collection of data can become an almost
machine-like object, changing frequently in certain places but relatively
fixed in others. An apparently difficult algorithm can be made easy by the
selection of an appropriate structuring and constraint of the data.

The development of AMBIT/L has included some pleasant surprises.
The expected heavy demand for an elaborate graphics terminal did not arise;
instead, an ordinary teletype (or line printer) proved adequate to " draw"
working diagrams using the ordinary characters. Problems with formatting

P

pours

P

were eliminated by simple conventions which just happened to work for
AMBIT/L. And the language structure seemed to flourish generally in the
absence of the problems of delimiting, separating, and grouping which afflict
textual programming languages.

In terms of more familiar languages, AMBIT/L can be viewed as
operating on list-structured data resembling that of LISP [1]; incorporating
the pattern-matching style of programming which is characteristic of SNOBOL [2];
adopting the block-structured program framework of ALGOL 60 [3]; and pro-
viding trapping and interrupt facilities found in PL/I [4] .

Another view of AMBIT/L is to consider it a specialized version of
AMBIT/G [5,6,7,12], a language of much greater theoretical interest and, for
the present, of lesser practical value, This view is both historically and
logically correct. AMBIT/L followed AMBIT/G by about two years and a
future objective is to derive AMBIT/L from AMBIT/G by a completely formal
sequence of "constraints" on the program and data of AMBIT/G.

We have remarked that AMBIT/L operates on list-structured data
resembling that of LISP. In fact, however, AMBIT/L data is a substantlal
generalization of LISP data, and operations can be performed which would, at
best, be shady practice in LISP. An AMBIT/L program can create and use
circular lists in a natural way. And a program can preclude or reduce auto-
matic garbage collection by gathering up cells which are known to be free and
returning them "manually" to the free list.

In every pattern-matching language the method of scanning the data
is of vital importance. Two very efficient mechanisms for pattern-matching
are built into AMBIT/L. First, the rules of the language beguile the pro-
grammer into writing "accessible patterns", that is, patterns which can be
interpreted as a specific set of "walks" through the data structure which do
not require backing up and frying again. Second, the language includes on-
venient facilities for symbol table management and associative addressing
which are implemented by well-concealed hash-code addressing mechanisms,
The virtue of the overall design is that these efficiency mechanisms do not
distort or complicate the fundamental idea of diagrammatic pattern matching.

The AMBIT/L programming system has been operational on a Digital
Equipment Corporation PDP-10/50 time-sharing computer since September 1969,
The system includes its own diagram generator, compiler, link editor,
interpreter, and debugging facility.

AMBIT/L has been used to implement its own compiler (which was
bootstrapped), its own debugging system, and certain of its built-in functions
such as those for input-output and for long-integer arithmetic, But the most
notable application of AMBIT/L has been to IAM,

IAM [8] is a large and complex system for interactive algebraic
manipulation. IAM is written entirely in AMBIT/L. As of July 1970, it was
composed of 301 separately compiled AMBIT/L program blocks; it has block
nesting to a depth of 13 levels; has a listing of about 1500 pages of two-
dimensional diagrams; and compiles to reentrant interpretive object code
about 40,000 36-bit words long.

This paper describes those aspects of AMBIT/L which are unusual
and important, It provides an outline of the language, some of the design
motivation, and some examples. It is an appropriate basis for evaluation
of the language; but it should, ideally, be supplemented by a few moderately
large example programs. There are no prerequisites for the paper; but the
reader without experience with ALGOL 60 and LISP may find certain passages
difficult.

THE DATA

It is usual to regard the data of a high level language as a vague abstraction.
For example, the ALGOL 60 Report [3] set a high standard for precision in its
description of program syntax; but the report did not give a description, precise
or otherwise, of the syntax of the data on which a program operates. The
philosophy is “the programmer takes care of the program and the program takes
care of the data". This view is appropriate and effective for simple data
structures,

The AMBIT languages were designed for applications which require
complicated data structures. A principal feature of each of these languages
is a carefully designed and precisely defined representation for the data on
which it operates: string structures for AMBIT/S [9] , list structures for
AMBIT/L, and general structures for AMBIT/G [5]. The philosophy becomes
"choose the right representation for the data and programming will be easy" .
This dictum must be applied twice; first, the system designer must provide a
good facility for data representation and, second, the programmer must use
that facility effectively.

An AMBIT/L program operates on a single object called the data graph.
This object is represented as a diagram of the sort called directed graph by
mathemacticians, and the term “graph" is used in this sense,

The form of the AMBIT/L data jraph will be described by giving the
form of the universal data graph of AMBIT/G and then applying certain
constraints to produce the form of the specialized data graph used by
AMBIT/L. This approach provides a foundation for the design of AMBIT/L

and, at the same time, relates the development of AMBIT/L to the current
work on AMBIT/G.

The Universal Data Graph

A data graph is a diagram composed of nodes and links. The diagram is
thought of as being in a vertical plane so that directions up, down, left, and
right can be applied.

A node is a node boundary and an associated node name. A node

boundary is a rectangle with a horizontal base, with a height which is
uniform for all nodes in a given diagram, and with a well-proportioned width,
A node name is a pair of character sequences, the type and subname, The
type is written along the upper edge of the node and right-justified on that
edge; and the subname is centered inside the node boundary.

We note that it would have been simpler to use a single character
sequence as 3 node name. However, the type-subname pair is used as a node
name because it permits the organization of nodes into subsets according to
type. This, as we shall see, is useful both in specifying constraints and in
writing programs,

A link Is a line segment, straight or curved, with an arrowhead at
one end. The plain end of the link is the tail, and the arrowhead end is the
head. Both ends must lie on a node boundary: the node whose boundary is at
the tail of the link is the origin,and the node at the head is the destination.
A link is said to point from its origin and point to its destination.

Each link in a data graph has a link name associated with it. In
AMBIT/G this link name can, in general, be an arbitrary node; it is almost
like a second origin of the link, In contrast, we shall see that the AMBIT/L
link name is @ highly specialized object. Since our main interest is in
AMBIT/L, we will not describe the AMBIT/G notation for link names. Itis
sufficient to assume the existence of some means to associate a link name
with each link.

The data graph must contain exactly one rode for every distinct node
name: furthermore, cach node must be the origin of exactly one link for every
distinet link name. This requirement gives rise to the two important properties

of the dato araph, functionality and permanence.

I'unculonality. A link name and an origin determine no more
than one dest.nation. That is, a given node can be the
origin of no more than one link of a given name.

Tnis restriction models the {act that most memory devices produce a single
value for 3 given address. Together *vith a complementary restriction on
AMBIT/L programs to be discussed later, it is the basis for the efficient
interpretation of AMBIT/L. programs.,

Permanence. Only the destination «f a8 link can change
during program execution. That is, links and nodes are
not created or destroyed.

This property models ‘he permanence of memory hardware, which persists
beneath various schemes for paging or allocation. It greatly simplifies the
programming language since it eliminates the fundamental tests and actions
which would otherwise be required by the creation and destruction of nodes
and links,

A data graph contains a special node called the undefined destination.
A link is undefined if its destination is this node. A node is undefined if
every link of which it is the origin or the des*!nation is an undefined link.
By convention, the omission of a link or a node from a data graph is equiva-

lent to its inclusion as an undefined link or node.

This convention is important because it permits a finite representa-
tion of a data graph which would otherwise have infinitely many nodes and
links. In particular, if all links are assumed to be undefined at the
beginning of program execution, then the data graph can be represented as an
empty diagram,

The abstraction of a data graph is a set of triples. Each triple
corresponds to one link in the data graph diagram and consists of (1) the node
name of the origin of the link, (2) the name of the link, and (3) the node
name of the destination of the link. Each node name is a pair of character
sequences, the type and subname., Each link name is a character sequence.

The purpose of the abstraction is, of course, to make clear what is
and is not formally essential in the diagram of a data graph. It is apparent,
for example, that the length or curvature of a link is not important so long as
we can interpret it as a triple of the proper form.

The data graph as defined above is said to be universal; that is,
there are no restrictions on the destinations of its links. The data graph
could be used in this form; but to do so would be to fail to recognize the
special properties or constraints which a given program imposes on its data.

The Constraints

A constraint restricts the set of nodes to which a certain link may point. A
variety of constraints may be used. For example, a constraint may take a link
out of circulation by requiring that it will always point to the undefined des-
tination node. Another kind of constraint may require that a link point to a
node whose type is a given character sequence. More complicated constraints
establish dynamic relations among two or more links,

The AMBIT/G system permits the user to begin with the universal
data graph and apply constraints to design his own data structures. Such a
system is so general that it is difficult to build and to use, and it has never
been completely implemented.

In contrast, the AMBIT/L system presents the user with a set of
built-in constraints which are not under his control and which produce a
specialized data graph suitable for list processing applications. These con-
straints are given informally in this section. When these constraints assert
that certain links or nodes are not allowed or do not exist, the intended

oz . 2 s s

[T

The data graph must contain exactly one rode for every distinct node
name; furthermore, each node must be the origin of exactly one link for every

distinct link name. This requirement gives rise to the two important prooerties

of the data graph, functionality and permanence.

Functionality. A link name and an origin determine no more
than one destination. That is, a given node can be the
origin of no more than one link of a given name,

This restriction models the fact that most memory devices produce a single
value for a given address. Together with a complementary restriction on
AMBIT/L programs to be discussed later, it is the basis for the efficient
interpretation of AMBIT/L programs,

Permanence, Only the destination of a link can change
during program execution. That is, links and nodes are
not created or destroyed.

This property models the permanence of memory hardware, which persists
beneath various schemes for paging or allocation. It greatly simplifies the
programming language since it eliminates the fundamental tests and actions
which would otherwise be required by the creation and destruction of nodes
and links,

A data graph contains a special node called the undefined destination.
A link is undefined if its destination is this node. A node is undefined if
every link of which it is the origin or the destination is an undefined link.

By convention, the omission of a link or a node from a data graph is equiva-
lent to its inclusion as an undefined link or node.

This convention is important because it permits a finite representa-
tion of a data graph which would otherwise have infinitely many nodes and
links. In particular, if all links are assumed to be undefined at the
beginning of program execution, then the data graph can be represented as an

empty diagram,

The abstraction of a data graph is a set of triples. Each triple
corresponds to one link in the data graph diagram and consists of (1) the node
name of the origin of the link, (2) the name of the link, and (3) the node
name of the destination of the link. Each node name is a pair of character
sequences, the type and subname. Each link name is a character sequence.

The purpose of the abstraction is, of course, to make clear what is
and is not formally essential in the diagram of a data graph. It is apparent,
for example, that the length or curvature of a link is not important so long as
we can interpret it as a triple of the proper form,

The data graph as defined above is saild to be universal; that is,
there are no restrictions on the destinations of its links. The data graph
could be used in this form; but to do so would be to fail to recognize the
special properties or constraints which a given program imposes on its data.

The Constraints

A constraint restricts the set of nodes to which a certain link may point. A
variety of constraints may be used. For example, a constraint may take a link
out of circulation by requiring that it will always point to the undefined des-
tination node. Another kind of constraint may require that a link point to a
node whose type is a given character sequence, More complicated constraints
establish dynamic relations among two or more links.

The AMBIT/G system permits the user to begin with the universal
data graph and apply constraints to design his own data structures. Such a
system is so general that it is difficult to build and to use, and it has never
been completely implemented.

In contrast, the AMBIT/L system presents the user with a set of
built-in constraints which are not under his control and which produce a
specijalized data graph suitable for list processing applications. These con-
straints are given informally in this section. When these constraints assert
that certain links or nodes are not allowed or do not exist, the intended

meaning is that these links or nodes are constrained to remain in the

undefined state.

Only two link names, vertical, and horizontal are allowed. If the
tail of a link lies on the upper or lower side of a node boundary, then the
link is named vertical. If the tail of the link lies on the left or right side of
a node boundary, then the link is named horizontal. It is convenient to
allow the use of down and right as synonyms for these link names, since

these words suggest the directions in which the links are usually drawn.

Only eleven distinct types, to be listed in the following paragraphs,
are allowed; and special constraints are associated with each. An allowed
type is a single letter, chosen so that it is the initial letter of a word used
to describe the nodes involved.

A mark node has type M. Its subname must be an identifier. A
mark is terminal; that is, it cannot be the origin of a defined link. Further-
more, aside from being distinguished as marks, the only property of mark
nodes is their existence as mutually distinct link destinations. For example,
a program cannot test for the presence of a certain letter in the subname of an
arbitrarily selected mark.

A basic symbol node has type B. Its subname must be the char-
acter '%' followed by (1) a single printing character or (2) a multi-letter name
for a single non-printing character. Thus, for example, the subnames %A,
%$, and %CR represent the first letter of the alphabet, the dollar sign, and
the (non-printing) carriage return, respectively. The set of basic symbols is
finite; the present implementation provides a subset of the 128 ASCII char-
acters. The basic symbols are terminal, but AMBIT/L has built-in functions
which accept them as arguments and thus establish semantic content. Most

important are the input-output functions, which associate each basic symbol
with appropriate typographical symbols.

A function-name node has type F. Its subname must be an identifier.

It is terminal. Each function-name node is permanently associated with a
function definition., This definition may be part of the user program being

executed or it may be "built-in" as part of the system. In either case, a
function-name node can be "stored" as the destination of a link and later
used to specify an indirect call on a function.

A label node has type L. It is similar to a function-name node,
except that it is associated with a label in the program being executed and
is used for indirect transfer of control.

An integer node has type I. Its subname must be a decimal integer.
Only one node is permitted for each numerically distinct number; for example,
13 is allowed but +13 and +013 are not. It follows that two links have
numerically identical destinations only if they point to the same node. The
present implementation accommodates, for all practical purposes, all possible
integers. An integer node is terminal.

A real node has type R. Its subname must be a construct similar
to the floating-point constant of FORTRAN. Only one node is permitted for
each distinct real number. The present implementation is limited to a finite
subset of the real numbers. A real node is terminal. Together, the integer
and real nodes constitute the numeric data of AMBIT/L, and the system has
the appropriate built-in functions to operate on these nodes.

A pointer node has type P. Its subname must be an identifier.
Each pointer node has a vertical link, and the node which is the destination
of this link can be called the "value" of the pointer node. Pointers are
similar to the "variables" of familiar programming languages. In particular,
AMBIT/L programs have a block structure which scopes pointer nodes exactly
as ALGOL 60 block structure scopes variables, On the other hand, AMBIT/L
does not have a type-declaration to restrict the values of pointers and takes
a simpler, less efficient approach to numeric processing then ALGOL. In
the present implementation, a pointer node cannot be the destination of a
link; but this constraint now appears to be superfluous.

A string node has type S. Its subname must be a single quote
followed by an arbitrary character sequence followed by a single quote. Any
of che characters available in the implementation may be used, and

conventions are provided for mentioning the single quote and the non-
printing characters. Each string node has a vertical link, The string nodes
are a variant of the pointer nodes and are used for symbolic indexing of the
tables associated with text processing in general and compilation in
particular. A string node can be used as a "word"” of text and its link can
point to a representation of whatever is known about the word.

A token node nas type T. Its subname must be a left parenthesis
followed by a sequence of subnames followed by a right parenthesis. Except
for a few uninteresting restrictions, the subnames may be those of any types
of nodes, including other tokens. The tokens are an obvious generalization
of the strings; the subname is composed of subnames rather than single char-
acters. One intended use of tokens is to implement subscripted variables;
more generally, they permit a list of nodes to determine the name of a single
node.

A cell node has type C. The subname of one celi, the null cell,
must be a double asterisk, '**'., The subname of every other cell must be a
dollar sign followed by an unsigned integer. Each cell has one horizontal link
and one vertical link. The horizontal link must point to a cell node or the
undefined node; this confines the horizontal links to the formation of a list,
while the vertical links are used to point to the (unrestricted) values of the
elements of the list. The cell is the only node with more than one link, and
it is the only means for linking together a general data structure.

The undefined-destination node has type U and subname $UNDEF.
It is terminal. As we have seen, this node is used to establish the undefined

state of links and nodes.

Example

We ncw give an illustration of the data graph as it might appear at some
point during the execution of a program,

10

2.3

11

P P P P
X Y COUNT Z
I P T
2.3 -1,5E-4 3 SUNDEF
P
ERROR
J?c o o C C
580 —b] $5 || $6 518 8 $3 f—
/ B J?B B B B
%M %I %S %S | |
w,
l o C e c G
$7 —Bi$17 —B{$78 —B>$60 5 ** |
B B B B
%N %G % %$
P T
ZERO.DIV (('A' 3 22) 'VEL' %X)
F J7c C C
ZERO .TRAP s31 s{ss0 B{s80
M j C C
S T |ABs $81 |[—p{$21
'VEL' (‘A" 3 22)
; . v,
R 'VEL' 3

The top row of this data graph has four pointers which play the role
of variables; each has a down link to @ node which is its current value. Thus
P/X has as its value the real node R/2.3, P/Y has value R/-1.5E-4 (which is
-0.00015), and so on. The rightmost variable and value are redundant since
the destination U/SUNDEF would have been assumed for the link if it had not
been shown.

The next five rows are a single structure; namely, the pointer
P/ERROR whose value is a list of nine basic symbols (which spell out
*“MISSING $"). The use of the null cell, C/**, to terminate a list is standard
practice. The next row begins with a pointer whose value is a function-name.
This value exemplifies the fully general capability of the language for function
(and label) variables.

In the lower-left corner are a string node and a token node. As it
happens, both have R/2.3 as current value. Note that P/X also has this
value and that, although R/2.3 appears in two places, it is considered to be
the same node. We shall see later that although a subname of a pointer is
an indivisible object, the subname of a string or token can be broken down
or constructed by a program. For example, S/'VEL' could be broken down into
a list of three basic symbols, namely B/%V, B/%E, and B/%L. The token
shown here has three parts, and could be the name of an element in a two-
dimensional array named S/'A’'.

At the lower right is a token with a complicated subname. Its value
is a list whose first element is a mark, whose second element is a sublist,
and whose remaining elements are the value of P/ERROR. Note that the sub-
list ends by pointing back at its "father" cell. There is no restriction
against such forms of reentrance or circularity in the data graph.

The abstraction of the data graph is the following set of triples:

12

(P/X, down, R/2.,3)
(p/Y, down, R/-1.5E-4)
(P/COUNT, down, 1/3)
(P/Z, down, U/$UNDEF)
(P/ERROR, down, C/$80)
(C/$80, down, B/%M)
(C/$80, right, C/$5)
(c/$5, down, B/%I)
(C/$5, right, C/$6)

... and so on.

We have just discussed the "meaning” of a particular data graph
in considerable detail without exhibiting the program which, presumably,
created and operated on that data. AMBIT/L emphasizes this self-contained
and independent existence of the data.

13

THE RULE

An AMBIT/L program is a simple framework in which a collection of rules is
embedded. The framework is derived from the block structure of ALGOL 60 and
will be discussed briefly in the next section. The rules are the executable
units of the language and will be described in this section,

Each rule is a diagram. This section gives the structure (syntax)
and interpretation (semantics) of rules, The description of the structure is
based on the previously given definition of the data graph. The interpretation
of rules is given in an intuitive and heuristic style which, we believe, is most
natural for a human interpreter. Only after this interpretation is complete is
the important question of uniqueness and efficiency of rule interpretation
discussed.

A rule is not an unconditional command; rather, it instructs the
interpreter to attempt to perform a process which may turn out to be impossible.,
A rule says "try to find such-and-such a structure in the data graph and then
change it to be thus-and-so". The program logic (flow of control) of AMBIT/L
is based on this heuristic property of rules. As we shall see in the next
section, a program associates with each rule two successor rules. One of
these is interpreted next according as the current rule succeeds or fails.

For purposes of definition, we will assume that a desired rule is
generated by creating a data graph and then applying some (zero or more)
extension operations to the diagram. These operations are:

14

generalize a subname,
generalize a type,

add a modification link,
add a function link, and
add a flow link.

Note well that the notion of "extending" a data graph to produce a rule is only
a method of describing the structure of rules. A programmer will, of course,
draw a rule directly in its final form; and rules themselves are certainly not
modified in this way during program execution.

Make No Extension

In the simplest case, a data graph can be used as a rule without any change.
For example, consider the example rule,

El.
P P
X Y
I $ S
15 'DEF'
$M
R28

This rule has the same form as a data graph and its abstraction is the set of
three triples

(P/X, down, 1/15)
(P/Y, down, S/'DEF')
(S/'DEF', down, M/R28)

Generally speaking, a rule of this kind (unextended data graph) is interpreted
as follows:

15

Try to find a set of links in the data graph which is
identical to the set of links in the rule.

Such a rule is a pure test; its execution does not modify the data but can
affect the flow of control by choice of successor. (Forms of rules which do

modify data are discussed below.)

Consider, as a second example, the same rule with all links

removed, namely

B4
P P
X Y
I S
15 '‘DEF'
M
R28

This diagram does satisfy the definition of the data graph although its
abstraction is the null set (set of no triples). The rule always succeeds and
it therefore a kind of "no-operation"; but we will refer back to it when mod-
ification links are discussed.

Generalize a Subname

A subname may be deleted from a rule to produce a new, more general rule.
By repeated application of this operation, a rule with several deleted sub-

names is produced.

For example, starting with rule El above (which has the form of a
data graph), we delete two subnames, 15 and 'DEF', and obtain the rule

16

E3.
P p
X Y
I) S
M
R28

This rule says "try to find the following in the data graph: first, a node P/X
which points down to an (arbitrary) integer node and, second, a node P/Y
which points down to an (arbitrary) string node which, in turn, points down to
M/R28". More generally, a rule of this kind is interpreted as follows:

Make a copy of the rule and try to bind each node (fill in
the missing subname where necessary) so that for each link
in the rule there is an identical link in the data graph.

Such a rule is still a pure test; but it can "match" many different states of

the data graph and is, in this sense, "generalized".

Generalize a Type

If the subname of a node is blank (because of the generalization of the
subname), then the type of that node may be deleted or may be replaced by a
type-set. A type-set is any subset of the allowed types (except U) in any
order. For example, MIR is a type set and specifies a node which is a mark,

integer, or real.

For example, starting with rule E3 above, we delete two types and

a subname and then replace a type with a type-set. This gives E4.

17

In E4 the nodes in the left column are redundant; they assert that the

down link from P/X points to some arbitrary node. Since the only test in
AMBIT/L is a test for the destination of a link (and not the existence of a
link or a node), these nodes test nothing; but the 1ule is nevertheless legal.
The middle node on the righi has a blank type, which suggests that it may
match any type of node. However, since the node has a dovw~ .nk, the
type-set CSTP is implied.

E4.
P P

i

We now will expand the interpretation of rules by expanding the

detinition of binding. As used previously, binding simply meant filling in
a blank subname. Now it means (l) filling in a blank subname, (2) filling in
a blank type, and/or (3) deleting all but one type from a type-set.

Add a Modification Link

Modification links are the means by which a rule specifies the modification of
the data graph. A modification link resembles an ordinary link except that

it is (at least partly) a double line. One modification link can be added to
a rule wherever an ordinary link could or does appear in the rule. As an
example of the use of modification links, consider the rule

18

ES.

This rule may be read as "the pointer Ql selects some element (we don't

care what its value ic) of a list; set that element to zero and advance QI to
the next element in the list". Note that the two down links from QI represent
the "before and after" positions of the link and suggest movement of the link.
A remarkable aspect of AMBIT/L is that, because of the freedom of two-
dimensional notation, the "before and after" can be included in a singie
diagram, This contrasts with the case of SNOBOL and AMBIT/S, for which

two one-dimensional "diagrams" are required for each rule.
The general interpretation of rules is now expanded to read

Make a copy of the rule and try to bind all nodes so that
for each ordinary link there is an identical link in the data
graph. If you succeed, modify the data graph so that for
each modification link in the rule there is an identical
(ordinary) link in the data graph.

19

As a second example, consider a rule which has only modification
links, namely

E6.
P p
X Y
I W s
15 'DEF!
U M
R28

The matching phase of this rule always succeeds (see the discussion of E2),
and it is the sort of rule which is used to initialize the data graph.

As a third example, consider a rule of innocent appearance,

E7.
p p
BETA Q
] v c
9 I VI
1 2

Ordinarily, this rule will set the down links of two cells to the integers 1/1
and 1/2. But if BETA and Q happen to point to the same cell, then the setting
of the down link is undefined: it is either I/]1 or 1/2 according to the order in

which the two modification links are processed. Several years of experience

20

indicate (surprisingly) that once programmers are aware of this possibility,

serious difficulties are very unlikely.

Add a Function Link

Function links are the means by which subroutines--:cth those built into the
system and those defined in the program--are called as part of the interpreta-

tion of a rule.

To add a function link to a rule, select a node of t'ype F and proceed

as follows:

l. Determine the number of arguments, m, and results, n,
associated with the function being called.

2. Select one of the four sides of the node boundary and
make this side into a double line; the result if a call
node.

3. From distirct points along the doubled side, draw m
ordinary links to appropriate destinations. Consider
these links ordered by their origins (from left to right
or top to bottom), and call their destinations the
origins [sic] of the function link.

4. From distinct points along one of the non-doubled sides,
draw n ordinary links to appropriate destinations. Con-
sider the links ordered by points of origin and call their
destinations the destinations of the function link.

The origins and destinations of a function link are, in fact, the
arguments and results of the function, respectively. Given the names of the
origin nodes, the definition of the function uniquely determines the names of
the destination nodes. If a function is built-in, its definition is found
within the language definition itself. If a function is user-defined, its
definition is a subprogram included in the same program as the function call.

We now give the general interpretation of rules for the final time,

21

Make a copy of the rule and try to bind all nodes so that
(1) for each ordinary link there is an identical link in the
data graph and (2) for each function link the origins and
destinations are consistent with the definition of the
function. If you succeed, modify the data graph so that
for each modification link in the rule there is an identical
(ordinary) link in the data graph.

Consider the pei.urmance of arithmetic as exemplified by the rule

E3.
P P P
X Y /
Y'f' R Yl[R F / R
DIVIDE
4 A}
F R R
ADD > 2.0

This rule is equivalent to the ALGOL assignment statement

z 1= (x+y)/2.0
where x, y, and z have been declared real ALGOL variables. The pointers
X and Y locate the arguments to ADD; then the ADD function link locates the
first argument of DIVIDE; and then DIVIDE locates its result. All this is the
binding of nodes. Then the modification link causes the down link of Z to be
set to the final result,

Consider next the silly rule

Eg.

DOWN DOWN

DOWN

) M
R28

Note that if the function DOWN is defined as simply veading the down link of
its origin to obtain its destination, then this rule is equivalent to E3 above.
This example shows how we could, as an exercise, express all rules entirely
in terms of function links,

Add a Flow Link

All ordinary and function links are processed before any modification links.
Otherwise, however, the interpretation of rules leaves the order of link pro-
cessing undefined. This vagueness allows the interpreter, human or auto-
matic, to choose an interpretation which reduces the cost of interpretation.

There are circumstances in which the programmer wishes to exercise
control over this ordering, however. He may do so in order to make his own

23

contribution to optimization, or to exclude an interpretation which, because
of side-effects of a function, would be an error. For this purpose, the flow
link is used.

A flow link resembles an ordinary link except that it is a jagged
line (see example). Its tail can lie anywhere on a node boundary because
there is no down-or-right distinction among flow links.

A flow link from one call node to another specifies that the function
call at the tail of the flow link must be processed before that at the head.
We will not discuss the meaning of a flow link whose origin or destination is
an ordinary node; the currently implemented interpretation of this case is not
very good.

An example of the use of flow links to control program logic is given
in E10, below. This rule says "If the down link of DENOM points
to zero then perform the function whose name is the value of ZERO . DIV,
whose argument is the value of NUM, and whose result will become the value
of QUO". The flow link assures that the function will be performed only if
the value of DENOM is R/0.0. The rule also illustrates the use of a function
name variable, the pointer P/ZERO.DIV.

El10.
P P
DENOM ZERO.DIV

s

i

VY R

0.0 QUO

NUM

24

Restrictions

We now introduce certain restrictions on the structure of the rule. These
restrictions are very fundamental; each makes an important contribution to
the character of AMBIT/L as an efficient programming language.

R1. The undefined node. A node of type U (undefined)
must not appear in a rule.

There is only one node of type U, namely U/$UNDEF, the undefined node.
This node was built into AMBIT/L to provide a "don't know and don't care"
destination for a link., More precisely, the undefined node is used by the
interpreter as a private device to record the fact that the program does not
have control over the destination of a particular link,

According to the restriction just given, the undefined node cannot
be named literally in a rule. Furthermore, it is the case that any programmed
attempt to "read" a link whose destination is the undefined node is a run-time
error. Therefore, the undefined node cannot be referenced in any way in a
rule and it is, in this sense, a "private device" of the interpreter.

The obvious use of the undefined node is as the initial value for all
links; but, as part of the important activity of storage management, the

interpreter will, at predictable times during program execution, "lose" the
value of a link by setting it to point to U/SUNDEF., This treatment of data
makes possible the optimization of AMBIT/L programs for a production
environment,

R2, Cell names, The use of a cell with a specific subname
other than the null cell is not permitted in a rule.

The purpose of a cell is to "split a link"; that is, one can think of a single
link which points to a cell as becoming the two links which point from a cell.
If we deny the program access to the specific name of a cell (as this restric-~
tion does), then the interpreter can assume responsibility for getting additional
cells when they are no longer in use. This mechanism will be discussed in

the section on functions.

2%

R3. Accessibility. Every node in a rule must be
accessible. A node is accessible if (1) it has a
specific name, or (2) it is a destination of an
ordinary or function link whose origins are
accessible.

The accessibility of the nodes of a rule and the functionality of the data graph

are, more than anything else, the characteristic features of AMBIT/L. Further-
more, their analog appears in the other AMBIT languages, AMBIT/S and
AMBIT/G, and their presence unites this family of pattern-matching languages.

The match phase (binding of nodes) of a rule can, according to the
accessibility restriction, be construed as a series of parallel walks. One

side of a parallel walk is in the rule; it begins with a node which has a
specific name and proceeds, link by link, to other nodes in the rule., The
other side of the parallel walk is in the data graph; it begins with the same
node as that which began the rule walk, and it proceeds in parallel, link for
link, with the rule walk. As the parallel walk proceeds, the nodes of the rule
are bound. This "AMBIT scan" is discussed in detail in an earlier paper [10] .

The method of pattern matching just described can be implemented very
efficiently; in fact, AMBIT/L rules are compiled into code which bears no
resemblance to that for a general pattern-matching facility. Each step of a
walk has a relatively small maximum cost which is independent of the state of
the data graph. It follows that the cost of interpreting a rule does depend on
the cost of function calls, but does not depend directly on the state of
the data graph.

A related consequence of the accessibility restriction, which can be
proven by consideration of parallel walks, is as follows: For a given rule and
a given data graph, there is at most one way in which the nodes of the rule
can be bound to the data graph.

Each of the AMBIT languages seeks to appear to be a simple pattern-
matching language. This appearance is desirable because pattern-matching
is a useful and natural method of programming., Under this simple exterior,
however, lie restrictions which eliminate the usual scans and searches of

pattern-matching., These restrictions permit the compilation of prograins into
efficient and practical machine code.

26

THE PROGRAM

The framework of AMBIT/L is a relatively conventional part of the language.

Its use of block structure, function definition and transfer of control are based
on ALGOL 60, although we have generalized or simplified them in a few places;
furthermore, the design of the internal stack used in our implementation is
almost identical to that used for ALGOL 60 [11] . Accordingly, our discussion
of the program framework will be brief.

An AMBIT/L program is thought of as a character sequence. In support
of this view, a rule is viewed as a single character; an oversized and com-

plicated character, but a character nonetheless.

As in ALGOL 60, a program is a block. A block is a sequence of
declarations, function definitions, rules and other blocks. Flow of control is
established by attached labels and transfer lists as indicated by the following

example:

LABI:

]

S/ DONE F/LOOP;

This is @ single rule, abbreviated to a small rectangle, as it might appear in a
program. It is labelled LABl; and after each execution of the rule the interpreter
will proceed to the rule labelled DONE or LOOP, according as the rule succeeds
or fails, There are, of course, various conventions to make the use of labels
and transfer lists more concise and convenient,

27

The programmer writes subroutines in the form of function definitions

and invokes these subroutines by means of call nodes in his rules., We have
already described call nodes, but we should reconsider their role. The purpose
of a call node is to map its arguments onto its results during the pattern-match
phase of rule interpretation. The call node can be interpreted (we now assert)
only after its origin nodes (arguments) in the rule have been bound; and the
effect of its interpretation is either to bind all its destination nodes (results)

in the rule (if the function succeeds) or to cause the rule to fail (if the function
fails).

A function definition declares a function-name and associates with it

a list of zero or more argument pointers, zero or more result pointers, and a

block. Because of the ALGOL~like use of blocks, it is easy to program
recursive function definitions.,

The block associated with a function-name is executed when a corre -
sponding call node is encountered. Upon entry to the block, the argument
pointers have been set to point to the nodes specified by the origins of the
call node. During execution of the block, the argument and result pointers are
used like ordinary pointers and, at some time, the result pointers are given
values, Exit from the block is accomplished by transfer to one of the special
labels RET or -RET according as the function call is to succeed or fail. If the
success exit is used, the values of the result pointers are used to bind the
destinations of the call node.

The execution of a complete user program by the system proceeds in

three steps.

1. The built-in macros are applied to the user program,
These macros define the way in which certain useful
but redundant notations shall be expressed in more
basic notation.

2, A copy of the environmental block is obtained and the
user program is embedded at a specified place. The
environmental block contains the definitions of all the
built-in functions as well as declarations for system
pointers, and so on. It is written as a normal AMBIT/L
block except for the definitions of a few built-in
functions which are primitive and must be defined in
English.

28

3. The user program, augmented by the environmental
block, is executed,

The next two sections of this paper describe some of the built-in functions
and built-in macros of AMBIT/L.

29

BUILT-IN FUNCTIONS

The library of built-in functions is discussed here; these are the functions
which a programmer can use (provided he understands them) without defining
them. A complete and formal definition of these functions could be given by
simply listing the full environmental block. However, it is more appropriate
to select for informal discussion a few topics of particular interest.

Arithmetic

The present implementation accomodates a finite set of real numbers. The real
numbers are represented in the 36-bit floating-point format of the PDP-10 which
allows 235 + 1 distinct (normalized) values. Each of these values can be
expressed, in an equivalent decimal form, as a real node; and these nodes are
called the active reals. The built-in macro set replaces any non-active real
in a program by the nearest active real; and functions which produce reals
enforce the same approximation.

In sharp contrast, the present implementation accomodates virtually
any integer. An integer i outside the range O=i< 215 is represented as a list
of n 36-bit binary words, This list is interpreted as an n~digit number with
base 235. Since n can range from one to about 20,000, as required, integers

of very large magnitude can be accommodated.
The usual se<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>